Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Dennis Kyle

Blurred image of the arch used as background for stylistic purposes.
Cellular Biology Department Head, Professor of Infectious Diseases and Cellular Biology, Director, Center for Tropical & Emerging Global Diseases, GRA Eminent Scholar Chair in Antiparasitic Drug Discovery

Research in the Kyle lab focuses on the discovery, development, and mechanism(s) of resistance to anti-parasitic drugs. At present we focus on malaria, the most important parasitic disease of man, and the spectrum of diseases caused by pathogenic free-living amoebae, perhaps the most neglected of all tropical parasitic diseases. The overarching objectives of our research is to develop new tools to prevent disease, to train a new generation of parasitologists, to foster multidisciplinary research on tropical diseases, and to implement our findings to reduce the burden of parasitic diseases in endemic countries.

New drugs are urgently needed to combat malaria, primarily due to the emergence of drug resistance to one or more drugs - a phenomenon known as multidrug resistance. In addition, new drugs are needed that target the dormant hypnozoite stage of vivax malaria that can persist in the liver for weeks to months to years before activating to cause relapsing malaria. With funding from the Bill and Melinda Gates Foundation we have developed a novel system that permits long term maintenance of primary hepatocyte physiology in vitro and have used this technology to develop the first 384 well high content imaging assay to discover anti-hypnozoite drugs.

Elucidating mechanism(s) of resistance and discovering new drug treatment regimens, combinations, or strategies to overcome resistance is a second major research focus. Our studies have demonstrated novel phenotypes that allow P. falciparum to become resistant to artemisinin drugs. In addition, we’ve shown that cryptic mitochondrial heteroplasmy is the mechanism underlying resistance to atovaquone and other drugs that target the mitochondria of P. falciparum.

The pathogenic free-living amoebae Naegleria fowleri and Acanthamoeba spp. cause a spectrum of diseases that have no good treatment options. Primary amoebic meningoencephalitis is an acute fulminating disease caused by N. fowleri and it is >98% fatal within 2 weeks of exposure amoebae in warm freshwater. Acanthamoeba spp cause granulomatous amoebic encephalitis, amoebic keratitis, and skin infections that are equally difficult to treat. The Kyle lab has developed new high throughput methods and assays to discover new drugs that act rapidly, are cidal, and can be combined with existing drugs used to treat these nearly incurable diseases.

Research Interests:

Drug discovery for malaria and brain-eating amoebae; antimalarial resistance mechanisms

Complete List of Published Work:  https://pubmed.ncbi.nlm.nih.gov/?term=Kyle+DE

Publications (since 2017)

1.

Argomaniz, M., Cooper, C., Cheng, W., Vivas, A., Maher, S., Kyle, D., & Joyner, C. (2023). Adaptation of the Plasmodium cynomolgi Berok DC line to continuous in vitro culture.

2.

Maher, S. P., Bakowski, M. A., Vantaux, A., Flannery, E. L., Andolina, C., Gupta, M., . . . Kyle, D. E. (2023). A Drug Repurposing Approach Reveals Targetable Epigenetic Pathways in Plasmodium vivax Hypnozoites.. bioRxiv. doi:10.1101/2023.01.31.526483

3.

MalariaGEN., Abdel Hamid, M. M., Abdelraheem, M. H., Acheampong, D. O., Ahouidi, A., Ali, M., . . . van der Pluijm, R. W. (2023). Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples.. Wellcome Open Res, 8, 22. doi:10.12688/wellcomeopenres.18681.1

4.

Marques-da-Silva, C., Poudel, B., Baptista, R. P., Peissig, K., Hancox, L. S., Shiau, J. C., . . . Kurup, S. P. (2023). AIM2 sensors mediate immunity to Plasmodium infection in hepatocytes.. Proc Natl Acad Sci U S A, 120(2), e2210181120. doi:10.1073/pnas.2210181120

5.

Ward, K. E., Christensen, P., Racklyeft, A., Dhingra, S. K., Chua, A. C. Y., Remmert, C., . . . Bifani, P. (2022). Integrative Genetic Manipulation of Plasmodium cynomolgi Reveals Multidrug Resistance-1 Y976F Associated With Increased In Vitro Susceptibility to Mefloquine. JOURNAL OF INFECTIOUS DISEASES, 6 pages. doi:10.1093/infdis/jiac469

6.

Bowers, C., Hancox, L., Peissig, K., Shiau, J. C. C., Vantaux, A., Witkowski, B., . . . Kurup, S. P. P. (2022). Cryopreservation of Plasmodium Sporozoites. PATHOGENS, 11(12), 13 pages. doi:10.3390/pathogens11121487

7.

Botnar, A., Lawrence, G., Maher, S. P., Vantaux, A., Witkowski, B., Shiau, J. C., . . . Kyle, D. E. (2022). Alkyne modified purines for assessment of activation of Plasmodium vivax hypnozoites and growth of pre-erythrocytic and erythrocytic stages in Plasmodium spp.. Int J Parasitol, 52(11), 733-744. doi:10.1016/j.ijpara.2022.03.003

8.

Vantaux, A., Peneau, J., Cooper, C. A., Kyle, D. E., Witkowski, B., & Maher, S. P. (2022). Liver-stage fate determination in Plasmodium vivax parasites: Characterization of schizont growth and hypnozoite fating from patient isolates. FRONTIERS IN MICROBIOLOGY, 13, 13 pages. doi:10.3389/fmicb.2022.976606

9.

Pathak, A. K., Shiau, J. C., Franke-Fayard, B., Shollenberger, L. M., Harn, D. A., Kyle, D. E., & Murdock, C. C. (2022). Streamlining sporozoite isolation from mosquitoes by leveraging the dynamics of migration to the salivary glands. MALARIA JOURNAL, 21(1), 11 pages. doi:10.1186/s12936-022-04270-y

10.

Limon, A. -C. D., Patabendige, H. M. L. W., Azhari, A., Sun, X., Kyle, D. E., Wilson, N. G., & Baker, B. J. (2022). Chemistry and Bioactivity of the Deep-Water Antarctic Octocoral Alcyonium sp.. MARINE DRUGS, 20(9), 12 pages. doi:10.3390/md20090576

11.

Ruberto, A. A., Maher, S. P., Vantaux, A., Joyner, C. J., Bourke, C., Balan, B., . . . Kyle, D. E. (2022). Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targets. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 12, 23 pages. doi:10.3389/fcimb.2022.986314

12.

Marques-da-Silva, C., Peissig, K., Walker, M. P., Shiau, J., Bowers, C., Kyle, D. E., . . . Kurup, S. P. (2022). Direct type I interferon signaling in hepatocytes controls malaria. CELL REPORTS, 40(3), 15 pages. doi:10.1016/j.celrep.2022.111098

13.

Christensen, P., Racklyeft, A., Ward, K. E., Matheson, J., Suwanarusk, R., Chua, A. C. Y., . . . Russell, B. (2022). Improving in vitro continuous cultivation of Plasmodium cynomolgi, a model for P. vivax. PARASITOLOGY INTERNATIONAL, 89, 6 pages. doi:10.1016/j.parint.2022.102589

14.

Cank, K. B., Shepherd, R. A., Knowles, S. L., Rangel-Grimaldo, M., Raja, H. A., Bunch, Z. L., . . . Oberlies, N. H. (2022). Polychlorinated cyclopentenes from a marine derived Periconia sp. (strain G1144). PHYTOCHEMISTRY, 199, 8 pages. doi:10.1016/j.phytochem.2022.113200

15.

Dong, Y., Sonawane, Y., Maher, S. P., Zeeman, A. -M., Chaumeau, V., Vantaux, A., . . . Vennerstrom, J. L. (2022). Metabolic, Pharmacokinetic, and Activity Profile of the Liver Stage Antimalarial (RC-12). ACS OMEGA, 7(14), 12401-12411. doi:10.1021/acsomega.2c01099

16.

Iyamu, I. D., Zhao, Y., Parvatkar, P. T., Roberts, B. F., Casandra, D. R., Wojtas, L., . . . Manetsch, R. (2022). Structure-activity and structure-property relationship studies of spirocyclic chromanes with antimalarial activity.. Bioorg Med Chem, 57, 116629. doi:10.1016/j.bmc.2022.116629

17.

Russell, A. C., & Kyle, D. E. (2022). Differential Growth Rates and In Vitro Drug Susceptibility to Currently Used Drugs for Multiple Isolates of Naegleria fowleri. MICROBIOLOGY SPECTRUM, 10(1), 12 pages. Retrieved from https://www.webofscience.com/

18.

Barney, R., Velasco, M., Cooper, C. A., Rashid, A., Kyle, D. E., Moon, R. W., . . . Jang, I. K. (2022). Diagnostic Characteristics of Lactate Dehydrogenase on a Multiplex Assay for Malaria Detection Including the Zoonotic Parasite Plasmodium knowlesi. AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 106(1), 275-282. doi:10.4269/ajtmh.21-0532

19.

Maher, S. P., Vantaux, A., Cooper, C. A., Chasen, N. M., Cheng, W. T., Joyner, C. J., . . . Kyle, D. (2021). A Phenotypic Screen for the Liver Stages of Plasmodium vivax.. Bio Protoc, 11(23), e4253. doi:10.21769/BioProtoc.4253

20.

Phan, I. Q., Rice, C. A., Craig, J., Noorai, R. E., McDonald, J. R., Subramanian, S., . . . Myler, P. J. (2021). The transcriptome of Balamuthia mandrillaris trophozoites for structure-guided drug design. SCIENTIFIC REPORTS, 11(1), 13 pages. doi:10.1038/s41598-021-99903-8

21.

Maher, S. P., Vantaux, A., Chaumeau, V., Chua, A. C. Y., Cooper, C. A., Andolina, C., . . . Kyle, D. E. (2021). Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. SCIENTIFIC REPORTS, 11(1), 18 pages. doi:10.1038/s41598-021-99152-9

22.

Lichorowic, C. L., Zhao, Y., Maher, S. P., Padin-Irizarry, V., Mendiola, V. C., de Castro, S. T., . . . Manetsch, R. (2021). Synthesis of Mono- and Bisperoxide-Bridged Artemisinin Dimers to Elucidate the Contribution of Dimerization to Antimalarial Activity. ACS INFECTIOUS DISEASES, 7(7), 2013-2024. doi:10.1021/acsinfecdis.1c00066

23.

Troth, E., & Kyle, D. E. (2021). EdU Incorporation To Assess Cell Proliferation and Drug Susceptibility in Naegleria fowleri. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 65(7), 10 pages. doi:10.1128/AAC.00017-21

24.

Sylvester, K., Maher, S. P., Posfai, D., Tran, M. K., Crawford, M. C., Vantaux, A., . . . Derbyshire, E. R. (2021). Characterization of the Tubovesicular Network in Plasmodium vivax Liver Stage Hypnozoites and Schizonts. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 11, 11 pages. doi:10.3389/fcimb.2021.687019

25.

Monastyrskyi, A., Brockmeyer, F., LaCrue, A. N., Zhao, Y., Maher, S. P., Maignan, J. R., . . . Manetsch, R. (2021). Aminoalkoxycarbonyloxymethyl Ether Prodrugs with a pH-Triggered Release Mechanism: A Case Study Improving the Solubility, Bioavailability, and Efficacy of Antimalarial 4(1H)-Quinolones with Single Dose Cures. JOURNAL OF MEDICINAL CHEMISTRY, 64(10), 6581-6595. doi:10.1021/acs.jmedchem.0c01104

26.

Tillery, L., Barrett, K., Goldstein, J., Lassner, J. W., Osterhout, B., Tran, N. L., . . . Van Voorhis, W. C. (2021). Naegleria fowleri: Protein structures to facilitate drug discovery for the deadly, pathogenic free-living amoeba. PLOS ONE, 16(3), 19 pages. doi:10.1371/journal.pone.0241738

27.

Troth, E. V., & Kyle, D. E. (n.d.). EdU incorporation to assess cell proliferation and drug susceptibility for the brain-eating amoeba, <i>Naegleria fowleri</i>. doi:10.1101/2021.01.07.425827

28.

McElroy, E. J., Nowak, B., Hill-Spanik, K. M., Granath, W. O., Connors, V. A., Driver, J., . . . de Buron, I. (2020). Dynamics of infection and pathology induced by the aporocotylid, Cardicola laruei, in Spotted Seatrout, Cynoscion nebulosus (Sciaenidae). INTERNATIONAL JOURNAL FOR PARASITOLOGY, 50(10-11), 809-823. doi:10.1016/j.ijpara.2020.03.016

29.

Rice, C. A., Colon, B. L., Chen, E., Hull, M., & Kyle, D. E. (2020). Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. PLOS NEGLECTED TROPICAL DISEASES, 14(9), 21 pages. doi:10.1371/journal.pntd.0008353

30.

Posfai, D., Maher, S. P., Roesch, C., Vantaux, A., Sylvester, K., Peneau, J., . . . Derbyshire, E. R. (2020). Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. CELL CHEMICAL BIOLOGY, 27(6), 719-+. doi:10.1016/j.chembiol.2020.03.009

31.

Bory, A., Shilling, A. J., Allen, J., Azhari, A., Roth, A., Shaw, L. N., . . . Baker, B. J. (2020). Bioactivity of Spongian Diterpenoid Scaffolds from the Antarctic SpongeDendrilla antarctica. MARINE DRUGS, 18(6), 14 pages. doi:10.3390/md18060327

32.

Rice, C. A., Troth, E., Russell, A. C., & Kyle, D. E. (2020). Discovery of Anti-Amoebic Inhibitors from Screening the MMV Pandemic Response Box on Balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba castellanii. PATHOGENS, 9(6), 17 pages. doi:10.3390/pathogens9060476

33.

Shilling, A. J., Witowski, C. G., Maschek, J. A., Azhari, A., Vesely, B. A., Kyle, D. E., . . . Baker, B. J. (2020). Spongian Diterpenoids Derived from the Antarctic Sponge Dendrilla antarctica Are Potent Inhibitors of the Leishmania Parasite. JOURNAL OF NATURAL PRODUCTS, 83(5), 1553-1562. doi:10.1021/acs.jnatprod.0c00025

34.

Rice, C. A., Troth, E. V., Russell, A. C., & Kyle, D. E. (n.d.). Discovery of anti-amoebic inhibitors from screening the MMV Pandemic Response Box on <i>Balamuthia mandrillaris, Naegleria fowleri</i> and <i>Acanthamoeba castellanii</i>. doi:10.1101/2020.05.14.096776

35.

Rice, C. A., Colon, B. L., Chen, E., Hull, M. V., & Kyle, D. E. (n.d.). Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. doi:10.1101/2020.05.13.093922

36.

Rice, C. A., Fernando Lares-Jimenez, L., Lares-Villa, F., & Kyle, D. E. (2020). In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria and Pathogen Boxes To Discover Novel Compounds with Activity against Balamuthia mandrillaris. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 64(5), 6 pages. doi:10.1128/AAC.02233-19

37.

Maher, S. P., Conway, A. J., Roth, A., Adapa, S. R., Cualing, P., Andolina, C., . . . Kyle, D. E. (2020). An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. LAB ON A CHIP, 20(6), 1124-1139. doi:10.1039/c9lc00921c

38.

Wong, H. N., Padin-Irizarry, V., van der Watt, M. E., Reader, J., Liebenberg, W., Wiesner, L., . . . Haynes, R. K. (2020). Optimal 10-Aminoartemisinins With Potent Transmission-Blocking Capabilities for New Artemisinin Combination Therapies-Activities Against Blood Stage P. falciparum Including PfKI3 C580Y Mutants and Liver Stage P. berghei Parasites. FRONTIERS IN CHEMISTRY, 7, 16 pages. doi:10.3389/fchem.2019.00901

39.

Rivera, I., Linz, B., Dewan, K. K., Ma, L., Rice, C. A., Kyle, D. E., & Harvill, E. T. (2019). Conservation of Ancient Genetic Pathways for Intracellular Persistence Among Animal Pathogenic Bordetellae. FRONTIERS IN MICROBIOLOGY, 10, 13 pages. doi:10.3389/fmicb.2019.02839

40.

Barrett, M. P., Kyle, D. E., Sibley, L. D., Radke, J. B., & Tarleton, R. L. (2019). Protozoan persister-like cells and drug treatment failure. NATURE REVIEWS MICROBIOLOGY, 17(10), 607-620. doi:10.1038/s41579-019-0238-x

41.

Chua, A. C. Y., Ong, J. J. Y., Malleret, B., Suwanarusk, R., Kosaisavee, V., Zeeman, A. -M., . . . Bifani, P. (2019). Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. NATURE COMMUNICATIONS, 10, 13 pages. doi:10.1038/s41467-019-11332-4

42.

Baragana, B., Forte, B., Choi, R., Hewitt, S. N., Bueren-Calabuig, J. A., Pisco, J. P., . . . Gilbert, I. H. (2019). Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(14), 7015-7020. doi:10.1073/pnas.1814685116

43.

Colon, B. L., Rice, C. A., Guy, R. K., & Kyle, D. E. (2019). Phenotypic Screens Reveal Posaconazole as a Rapidly Acting Amebicidal Combination Partner for Treatment of Primary Amoebic Meningoencephalitis. JOURNAL OF INFECTIOUS DISEASES, 219(7), 1095-1103. doi:10.1093/infdis/jiy622

44.

Antonova-Koch, Y., Meister, S., Abraham, M., Luth, M. R., Ottilie, S., Lukens, A. K., . . . Winzeler, E. A. (2018). Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. SCIENCE, 362(6419), 8 pages. doi:10.1126/science.aat9446

45.

de Buron, I., Colon, B. L., Siegel, S. V., Oberstaller, J., Rivero, A., & Kyle, D. E. (2018). First evidence of polychaete intermediate hosts for Neospirorchis spp. marine turtle blood flukes (Trematoda: Spirorchiidae). INTERNATIONAL JOURNAL FOR PARASITOLOGY, 48(14), 1097-1106. doi:10.1016/j.ijpara.2018.08.002

46.

Schafer, C., Dambrauskas, N., Steel, R. W., Carbonetti, S., Chuenchob, V., Flannery, E. L., . . . Sather, D. N. (2018). A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages. MALARIA JOURNAL, 17, 10 pages. doi:10.1186/s12936-018-2519-7

47.

Demers, D. H., Knestrick, M. A., Fleeman, R., Tawfik, R., Azhari, A., Souza, A., . . . Baker, B. J. (2018). Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. MARINE DRUGS, 16(10), 11 pages. doi:10.3390/md16100376

48.

Obaldia, N., Milhous, W. K., & Kyle, D. E. (2018). Reversal of Chloroquine Resistance of Plasmodium vivax in Aotus Monkeys. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 62(9), 7 pages. doi:10.1128/AAC.00582-18

49.

Roth, A., Maher, S. P., Conway, A. J., Ubalee, R., Chaumeau, V., Andolina, C., . . . Adams, J. H. (2018). A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum (vol 9, 2018). NATURE COMMUNICATIONS, 9, 1 page. doi:10.1038/s41467-018-04817-1

50.

Roth, A., Maher, S. P., Conway, A. J., Ubalee, R., Chaumeau, V., Andolina, C., . . . Adams, J. H. (2018). A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. NATURE COMMUNICATIONS, 9, 16 pages. doi:10.1038/s41467-018-04221-9

51.

Siegel, S. V., Rivero, A. V., Oberstaller, J., Colon, B. L., de Buron, I., & Kyle, D. E. (2018). Blood flukes Cardicola parvus and C-laruei (Trematoda: Aporocotylidae): life cycles and cryptic infection in spotted seatrout, Cynoscion nebulosus (Teleost: Sciaenidae). PARASITOLOGY INTERNATIONAL, 67(2), 150-158. doi:10.1016/j.parint.2017.10.012

52.

Duvalsaint, M., & Kyle, D. E. (2018). Phytohormones, Isoprenoids, and Role of the Apicoplast in Recovery from Dihydroartemisinin-Induced Dormancy of Plasmodium falciparum. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 62(3), 14 pages. doi:10.1128/AAC.01771-17

53.

Antonova-Koch, Y., Meister, S., Abraham, M., Ottilie, S., Lukens, A., Sakata-Kato, T., . . . Winzeler, E. (2018). IDENTIFICATION OF A DUAL LIVER-ASEXUAL STAGE ANTIMALARIAL TARGETING PFDHODH. In AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE Vol. 99 (pp. 535). New Orleans, LA: AMER SOC TROP MED & HYGIENE. Retrieved from https://www.webofscience.com/

54.

Thomas, S. A. L., von Salm, J. L., Clark, S., Ferlita, S., Nemani, P., Azhari, A., . . . Baker, B. J. (2018). Keikipukalides, Furanocembrane Diterpenes from the Antarctic Deep Sea Octocoral Plumarella delicatissima. JOURNAL OF NATURAL PRODUCTS, 81(1), 117-123. doi:10.1021/acs.jnatprod.7b00732

55.

Neelarapu, R., Maignan, J. R., Lichorowic, C. L., Monastyrskyi, A., Mutka, T. S., LaCrue, A. N., . . . Manetsch, R. (2018). Design and Synthesis of Orally Bioavailable Piperazine Substituted 4(1H)-Quinolones with Potent Antimalarial Activity: Structure-Activity and Structure-Property Relationship Studies. JOURNAL OF MEDICINAL CHEMISTRY, 61(4), 1450-1473. doi:10.1021/acs.jmedchem.7b00738

56.

McQueen, A., Blake, L. D., Azhari, A., Kemp, M. T., McGaha, T. W., Namelikonda, N., . . . Kyle, D. E. (2017). Synthesis, characterization, and cellular localization of a fluorescent probe of the antimalarial 8-aminoquinoline primaquine. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 27(20), 4597-4600. doi:10.1016/j.bmcl.2017.09.030

57.

Siegel, S., Rivero, A., Adapa, S. R., Wang, C., Manetsch, R., Jiang, R. H. Y., & Kyle, D. E. (n.d.). Mitochondrial heteroplasmy is responsible for Atovaquone drug resistance in <i>Plasmodium falciparum</i>. doi:10.1101/232033

58.

Kosaisavee, V., Suwanarusk, R., Chua, A. C. Y., Kyle, D. E., Malleret, B., Zhang, R., . . . Russell, B. (2017). Strict tropism for CD71(+)/CD234(+) human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi. BLOOD, 130(11), 1357-1363. doi:10.1182/blood-2017-02-764787

59.

Kanwar, A., Eduful, B. J., Barbeto, L., Bonomo, P. C., Lemus, A., Vesely, B. A., . . . Leahy, J. W. (2017). Synthesis and Activity of a New Series of Antileishmanial Agents. ACS MEDICINAL CHEMISTRY LETTERS, 8(8), 797-801. doi:10.1021/acsmedchemlett.7b00039

60.

Giulianotti, M. A., Vesely, B. A., Azhari, A., Souza, A., LaVoi, T., Houghten, R. A., . . . Leahy, J. W. (2017). Identification of a Hit Series of Antileishmanial Compounds through the Use of Mixture-Based Libraries. ACS MEDICINAL CHEMISTRY LETTERS, 8(8), 802-807. doi:10.1021/acsmedchemlett.7b00045

61.

Blake, L. D., Johnson, M. E., Siegel, S. V., McQueen, A., Iyamu, I. D., Shaikh, A. K., . . . Kyle, D. E. (2017). Menoctone Resistance in Malaria Parasites Is Conferred by M133I Mutations in Cytochrome b That Are Transmissible through Mosquitoes. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 61(8), 13 pages. doi:10.1128/AAC.00689-17

62.

Wirjanata, G., Handayuni, I., Prayoga, P., Leonardo, L., Apriyanti, D., Trianty, L., . . . Marfurt, J. (2017). Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 61(8), 10 pages. doi:10.1128/AAC.00355-17

 

 

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate Inquiries:  cellbio@uga.edu

Registration and Credit Transferscellbio@uga.edu

AP Credit, Section Changes, Overrides, Prerequisitescellbio@uga.edu

Graduate Inquiries:  cbgrad@uga.edu

Contact Us!

Associate Head: 

Dr. Cordula Schulz, 706-542-3515

Main office phone: 706-542-3310

Fax: 706-542-4271

Head of the Department: Dr. Dennis Kyle